updated 2008/08/05

__高周波シミュレータ、電磁解析ソフト (RF/Electromagnetic simulators)

 


 回路(高周波)解析シミュレータ

回路解析シミュレータの多くはSPICEをベースとしている。SPICEはカリフォルニア大バークレー校で開発され(バークレー校のSPICEページ)、現在も基本ソース(unix)は公開されている→download page。SPICE系の回路シミュレータはキルヒホッフの法則をベースとした節点解析法(ノーダル解析法) が使われている。回路網のすべての電流経路についてキルヒホッフの法則を適用し複素行列演算をおこなう。→ノーダル解析(節点解析)法説明pdf (エムイーエルのHP掲載のpdf)

 

 

blue27_up.gif 目次(page top)へ戻る

電磁(高周波)解析シミュレータ

blue27_up.gif 目次(page top)へ戻る

解説、参考

 

 マクスウェルの方程式とは:

  金属(導電体)に電気が流れると周囲に磁場ができる。この関係を万有引力の法則の式にならって表したのがアンペールの法則。しかしコンデンサーを通して交流(電流が変化)が伝わる現象とは合わない。マクスウエルはアンペールの法則に変位電流という項を追加して絶縁材をはさんで変化する電流が伝わる(変化する磁場ができる)ことを示す関係式を導いた。一方磁場が変化すると(絶縁材をはさんで)近くに置かれた金属(導電体)に電気が流れる(ファラデーの法則)。変化する電流が近くの場に変化する磁場を作り、その変化する磁場の場がさらに変化する電場をつくり....と導電体(電荷)を介在しなくとも連鎖して変化する電気が伝わることなり、マクスウエルは空間を伝わる電磁波の存在を予測した。

 (注: 現在の大学レベルの電磁気学では,電場や磁場はより根源的な電磁的実態の別の表れにすぎないということが実証されているため,電場や磁場を元に説明する方法は本質的でないとされています。)

  ファラデーの法則、マクスウエルが変形したアンペールの法則、ガウスの法則にNS極が単独で存在しないことを表す式の4つの式をまとめてマクスウエルの方程式と呼ばれる。1864年に発表。現在でもマクスウエルの方程式は電磁波の伝播を計算する場合に使われる重要な式。ファインマンは「電磁気の世界の中心はここにある。電気、磁気、光の完全な理論-動く電荷の作る場の完全な記述......物理学の最大の成功の一つ」と述べている(「ファインマン物理学V 電磁気学」岩波書店。物理的意味をじっくり把握したい人にはお薦め。なお、以下の式はこのファインマンの本で示される式と表記は異なっています。なおファインマンの時代には電場と磁場を作る本質的な電磁実態は理論のみで実験での確認はされていなかったためか、物理入門レベルの学生に向けた説明として電場と磁場を分けた説明となっています)。

 

マクスウエル方程式

 

 

divB = 0

divD= ρ

(単極磁荷の否定法則)

 

(ガウスの法則)

 

rotE = - ∂B/∂t

rotH =J + D/∂t

(ファラデーの法則)

(アンペールの法則とマクスウエルが導入した変位電流)

 

 

 

マクスウエル方程式 表記の説明

 

Bは磁束密度、Dは電束密度、Eは電場、Hは磁場、

Jは電流密度(ただし伝導電流分)、ρは電荷密度

 

divはダイバージェンス(発散)、∇・ とも表記。

ベクトルA (成分Ax, Ay, Az)に対してのスカラ積で

∇・A = ∂Ax/∂x + ∂Ay/∂y + ∂Az/∂z

 

rotはローテーション(回転)、∇x とも表記。

ベクトルA (成分Ax, Ay, Az)に対してのベクトル積で

∇x A =

|

|

|

ax

∂/∂x

Ax

ay

∂/∂y

Ay

az

∂/∂z

Az

|

|

|

 

 

 

 マクスウエルの方程式として電磁気学の教科書にはベクトル表記の式(上記4式)が載っている。これらの表記は後に英国のヘビサイドが整理したもの(参考 「パソコンによるアンテナ設計」小暮裕明編著 CQ出版の第1章など(ヘビサイドは過渡現象を計算するために演算子法と呼ばれる方法を考案した人。後から数学的にはラプラス変換(の一部)と証明される→説明馬場様のご指摘を参考。2002/1/1))。オンラインで見れる大学講義レベルのマックスウエルの方程式説明→電磁気ノート(山梨大中川教授のページ)。オフライン(pdF)では東工大OpenCourseWare(OCW)の公開電磁気講義ノート(各行の添付ファイル(pdf)をクリックする)。

  rotの意味についてわかりやすく解説された本として長沼伸一郎著"物理数学の直観的方法"通商産業研究社がある。

 マクスウエルが予言した電磁波はヘルツが1887年に発見。

 

 なおファラデーが電磁誘導の法則を発見した1831年にマクスウエルが生まれたとか("マクスウエル・場と粒子の舞踏"吉田武 著 共立出版 第28章など)。

   またマックスウエルがファラデーを手本に書いたという「電気論の初歩 上巻」(訳 竹内薫)が2006/2、JUNKDOのみから売り出されるそうです。JUNKDO TOPページに2/15発売と出ていたので店に行きましたら"まだ"とこのこと、ホームページの発売日を2/28に修正しますということでした。

 

 上に記しました発見の年など間違いがありえますので内容を引用される場合はしかるべき書籍や辞典などで確認ください。

 

  現在大学レベルの電磁気学では上の式でなく電磁ポテンシャル,電磁ベクトルという3次元空間に時間を加えた形であらわす4元ベクトルを基本にした式でマクスウエルの式をあらわします。本来マクスウエルはそのような形で表していたのですが,ヘルツとヘビサイドが電場と磁場が実態と考え,電磁ポテンシャルのようなパラメータは実態でないから用いないほうがわかりやすいと考えたことから省いたといわれています。もっともそのために一般の研究者,エンジニアが電磁気現象にマクスウエルの式を活用するには理解しやすくなったといわれています.現状までの工学面などへのマクスウエル式の適用では電場と磁場(電気系では電界と磁界という)が実態として計算しても不具合なく電磁気に関連する回路やアンテナなどが実現できることから当面この取り扱いで進むと思われます.マクスウエルの式を基本にしている電磁界シミュレータでも多くは電場と磁場を元に計算しています。

 

 FDTD法とは:

 電磁波の伝播を記述するマクスウェルの 微分方程式を差分(Finite Difference)化し,時間領域 (Time Domain)で解く方法。メッシュ分割できる解析対象であれば基本的にどんなものでも解析できる。モーメント法、 有限要素法では計算が困難な場合でも比較的簡単に解くことができるといわれている。解析領域の回りの境界条件が無反射で良いため、アンテナ解析などに向くといわれている。 FDTD法 横浜国大新井研の説明

 

 モーメント法とは:

 マクスウェルの方程式から目的とする構造に対する積分方程式を導出し周波数領域で数値的に解く方法。FDTD法が任意形状で良いのと比べると対象物の構造に制約がある。プログラムはFDTD法より複雑だが限定形状の場合には精度が出やすい。

 

 TLM法とは:

 FDTD法と同じくマクスウェルの方程式を時間領域で計算。電界と磁界両方がすべての境界ノードで計算されるため複合的な境界条件をモデリングする上ではFDTD法よりもすぐれている。TLM法もFDTD法も、メッシュが粗い場合は分散誤差を受けやすくなるが、TLM法はFDTD法よりは受けにくく、より精度を保てる。

 

blue27_up.gif 目次(page top)へ戻る

電磁界(場)解析、電磁気学関連図書、文献


更新情報   

25-Apr- 2008:  MicroStripesがCSTに買収。マクスウエルの式説明の修正追加。

01-Nov- 2006:  FDTD書籍(実践FDTD時間領域差分法)追加

15-Sep- 2006:  管理者mail address変更

25-Feb- 2006:  図書,文献整理追加。 ASL AMaze情報追加。

15-Feb- 2006:  東工大OCW講義ノート、電磁界シミュレータリンク(東工大平野さん)追加。

09-Feb- 2006:  HPSPICE、HyperLynxリンク追加。

24-Jan- 2006:  PSPICE関係、DesignerSVリンク先手直し。

12-Nov- 2005:  SCAT,Simetrixリンク追加

07-Jun- 2005:  keyFDTD、Sonnet技研などのリンク先手直し。

10-Nov- 2004:  Geocitiesの構成変更対応アドレスなどの手直し。

21-Jun- 2004:  管理者mailアドレスリンクはずし(迷惑mail対策)。

18-Oct- 2003:  Key-FDTDのページにリンク。リンク切れ修正。一部体裁手直し。

21-Sep- 2003:  MW-studioの一部ページリンクアドレス修正   

17-Jul-2003:  Microwave Officeのページリンクアドレス修正

07-Aug-2002:  MW-Studio(AET ジャパン)リンク

08-Jul-2002:  Micro stripes リンク手直し

20-Jun-2002:  HTML手直し

08-May-2002:  武蔵工大 阿部教授の電磁気学説明追加.

12-Mar-2002:  Pspice V9.2評価版 説明変更。

14-Jan-2002:  MEL SPICE説明アドレス修正。物理数学の直"観"的方法に字訂正。

06-Jan-2002:  Sonett Lite 評価版情報追加。物理数学の直感的方法説明追加。

01-Jan-2002:  PSPICE V9.2 評価版情報追加。 ヘビサイド説明手直し。

12-Nov-2001:  CircuitMakerリンク追加。ヘビサイド説明手直し。

07-Sep-2001:  ページ内リンク不具合手直し。

03-Sep-2001:  高周波シミュレータ・電磁界解析のページとして独立。

blue27_up.gif 目次(page top)へ戻る

 


 

高周波のページ(親ページ)の目次へ

 


関連ページ 、他

EMCのページ(電磁波ノイズ対策)  シグナルインテグリティのページ  検索エンジン集

 


本ページに関するご感想、不具合点のご指摘、改良案、

ご意見などをお寄せいただければ幸いです。→

(spam対策で意図的にlリンクをはずしています)

1 1